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Abstract—Belief propagation (BP) is a powerful algorithm to
decode low-density parity check (LDPC) codes over additive
white Gaussian noise (AWGN) channels. However, the traditional
BP algorithm cannot adapt efficiently to the statistical change of
SNR in an AWGN channel. This paper proposes an adaptive
scheme that incorporates a particle filtering (PF) algorithm into
the BP based LDPC decoding process. The proposed scheme
is capable to perform online estimation of time-varying SNR
at the bit-level and enhance the BP decoding performance
simultaneously.

Index Terms—Signal processing, Channel coding, Estimation,
Adaptive decoding

I. INTRODUCTION

As a type of error-correcting code, low-density parity-check

(LDPC) codes were first proposed by Gallager in the early

1960s [1] and revived by Mackay and Neal in 1996 [2]. Since

then, LDPC codes have attracted wide spread interest in the

research community.

For LDPC decoding problems, knowing the signal to noise

ratio (SNR) is necessary to achieve the best performance.

Thus, in many previous studies, the SNR is assumed to be

perfectly known prior to decoding. In reality, however, the

perfect knowledge of the SNR may not always be available

at decoder, as the channel SNR may vary over time. In

the presence of an SNR mismatch, the studies in [3]–[5]

showed that the decoding performance of BP can be degraded,

and it is more sensitive to the underestimation of SNR than

the overestimation. Thus, many decoding algorithms [4], [6],

which can perform SNR estimation, were proposed to avoid

the degradation of decoding performance caused by SNR mis-

match. In [4], a simple estimator of the unknown SNR in Turbo

decoding was proposed, which is based on the sums of squared

receiver values and sums of their absolute values. Ramon et

al. presented an EM-based estimation of the carrier phase, am-

plitude and noise variance in multiuser turbo receivers in [6].

In [4] and [6], it was found that the channel state information

extracted by their proposed estimator effectively improved the

decoding performance. However, in the above studies it was all

assumed that the SNR is fixed within each codeword block. In

practice, in many communication systems such as orthogonal

frequency division multiplexing (OFDM) and synchronous

code-division multiple-access (CDMA) systems, noise varies

with time quickly (e.g. within each codeword block). The

papers [7] and [8] consider a randomly varying noise variance

according to the Chi-square distribution in OFDM and CDMA

systems, respectively. Similar to the aforementioned works,

these two studies also assume that noise variances are the

same for all subcarriers. However, it is possible to consider the

change of SNR differs in bit-level for each codeword block.

Although one may argue that the actual SNR may be able to

be obtained through a pilot signal or feedback channel under

varying channel conditions, a fast varying channel implies

potentially a large communication overhead if we want to

take full advantage of the channel state information. In this

paper, we propose a noise adaptive LDPC decoding scheme

that can perform online estimation of the time-varying SNR

at the bit-level, where the time-varying SNR satisfies the Chi-

square distribution. The key idea of our proposed algorithm is

to incorporate a particle filtering (PF) algorithm [9] into BP

based LDPC decoding, where the PF estimates the posteriori

probability distribution of noise variance of each code bit by

sampling a list of random particles with associated weights.

Generally, the standard BP algorithm cannot handle the

situation when variables are continuous or the number of

variable labels is huge, e.g. the continuous SNR change in an

AWGN channel. Thus, the integration of PF and BP provides

a way for BP to handle continuous variables. In [10], the

implementations of particle methods as message passing were

studied. Other PF algorithms for decoding LDPC codes and

related codes were also described in [11], [12]. Moreover, PF

algorithms for channel equalization, estimation, tracking and

synchronization are investigated in [13]–[15].

In our scheme, we consider binary LDPC codes over an

AWGN channel with a BPSK modulation. Suppose an input

X takes values ±1 and the output is Y = X+Z, where Z is a

Gaussian random variable N
(

0, σ2
)

, and σ2 evolves over time

in bit-level. We show that the proposed algorithm no longer

depends on the initial estimation of noise variance, and it offers

a lower decoding error rate than the traditional BP decoding.

In this paper, the belief of each particle, generated by the
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BP algorithm, is used to update the weights in PF directly,

hence reducing the complexity of the weights update [15].

Furthermore, in the PF algorithm, we compare two different

particle moving methods, the Random Walk (RW) algorithm

and the Metropolis-Hasting (MH) algorithm [9], which are

used to perturb the congested particles after resampling. We

find that the BP algorithm based on PF using the MH algorithm

achieves a better decoding performance than the counterpart

using the RW algorithm.

II. NOISE ADAPTIVE LDPC DECODING

The main idea of noise adaptive LDPC decoding with PF

is illustrated in the factor graph of Fig. 1 with three regions,

where all circle nodes denote variable nodes and all square

nodes denote factor nodes. If an accurate estimation of the

noise variance σ2 is given, the standard BP algorithm can

obtain a good decoding performance by exchanging messages

within Region 3. In Region 3, factor node a = A,B, . . . , M
corresponding to fa, connects the bit variable node of xi, i =
1, 2, . . . , N and takes into account the constraints imposed by

the LDPC codes. The corresponding factor function fa is given

by

fa (xa) =

{

1 if even number of 1’s in arguments

0 otherwise
(1)

where xa indicate all variables connecting to factor node of

fa, that is xa = (xi|i ∈ N(a)), and N(a) represents the

set of neighbors for a node a. Now, assuming that the noise

variance is changing with time, we can model this using extra

variable nodes corresponding to σ1, σ2, . . . , σN , which are

shown as circles in Region 1. For each variable node of σi

in Region 1, we model it with Np particles, which are labeled

as σ1
i , . . . , σ

Np

i . Then these particles are used to estimate the

noise variance with the PF algorithm. Additionally, Region 1

and Region 3 are connected by factor nodes of fi in Region

2, and the factor functions are defined as

fi

(

x̂i, σ
k
i ; yi

)

=
1

σk
i

e
−

(yi−x̂i)
2

(σk
i )

2

(2)

where yi and x̂i are the i-th input codeword and candidate

codeword respectively, and the variables i = 1, 2, · · · , N
and k = 1, 2, · · · , Np. Furthermore, the correlation between

adjacent variable nodes is represented by additional factor

node of fi,i+1 in Region 1, where the corresponding factor

function is defined as

fi,i+1

(

σk
i , σk

i+1

)

= e
−

(σk
i+1−σk

i )
2

λi,i+1 (3)

where λi,i+1 is a parameter to reflect the correlation be-

tween adjacent variable nodes. Generally, a small λi,i+1

means a strong correlation, while a large λi,i+1 reflects a

weak/independent correlation. Moreover, the value of λi,i+1

can be estimated simultaneously with decoding (see detail in

section II-C).
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Fig. 1. Factor graph of belief propagation based on PF.

A. Belief Propagation based on Particle Filtering

In this section, we will explain the BP algorithm based on

PF in the factor graph of Fig. 1. The BP algorithm, which

estimates marginal probabilities by exchanging the message

between adjacent neighboring nodes, can only handle discrete

variables. The noise variance σ2 in the channel, however, is

not discrete in general. Nonetheless, by incorporating PF with

BP, we are able to extend BP to handle continuous variables.

Some similar implementations of particle methods including

message passing were studied in [10].

In our scheme, the key idea is to sample Np particles

σ1
i , . . . , σ

Np

i with associated weights for each variable node

of σi in Region 1. Note that these changes do not affect the

message update rules described in the standard BP algorithm.

However, the location and corresponding weight of each

particle σk
i have to be adjusted over time. In our algorithm,

the belief b
(

σk
i

)

of each particle is proportional to the particle

weight ωk
i . Thus the update of particle weight is achieved by

updating the belief of variable nodes using BP. According

to the rule of concentrating on particles with large weight

and discarding particles with negligible weight, locations of

particles are adjusted through systematic resampling (SR) [9]

algorithm and RW / MH algorithm. Finally, all weights are

reset to a uniform weight for further estimation.

The detailed workflow of the PF based BP algorithm is

described as follows.

1) At the initial step, for each variable node in Region

1, we initialize each particle value (σk
i )2 to (σ̂)2 and

weight ωk
i to 1

Np
, where the choice of (σ̂)2 does not

significantly influence the performance of our PF based

algorithm.

2) Then Np new samples, σ̃1
i , · · · , σ̃

Np

i , will be drawn

with probabilities proportional to ωk
i using systematic

resampling [16]. As a result, some σk
i that have small

probabilities will likely be discarded whereas those with

high probability will be repeatedly drawn.

3) To maintain the diversity of the particles, the new

particle locations will be perturbed by the RW algorithm
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or the MH algorithm. The MH algorithm adds a decision

step to retain or reject the proposed value generated by

the RW algorithm. Thus, the MH algorithm improves

the convergence behavior comparing to the standard

Gaussian RW algorithm.

4) Based on the new particles, update messages using the

standard BP algorithm and compute the corresponding

belief for each variable node.

5) Check if the estimated codeword satisfies the check

specified by the parity check matrix H . If the condition

is satisfied, the algorithm is completed; otherwise, go to

step 2. Our algorithm stops either when it finds a valid

codeword or when it reaches the maximum number of

iterations.

B. Noise Model

As stated above, we consider the case that the noise variance

σ2 varies continuously over time. In [17], the authors assume

that the noise variance varies sinusoidally. In many other

scenarios [7], [8], such as OFDM and CDMA systems, the

noise variance is changing as a random variable with a prede-

termined probability density function (PDF). Here we assume

that the noise variance is Chi-square distributed with R degrees

of freedom, each of which is a Gaussian distribution with zero

mean and variance σ2
h. The PDF of the noise variance is:

p(σ2) =
2−R/2σ−R

h

Γ(R/2)
(σ2)

R
2 −1e−σ2/2σ2

h , (4)

where Γ(·) denotes the Gamma function [18]. For various

scenarios, the corresponding PDF of noise variance can be

obtained by adapting different values of R and σ2
h.

C. Estimation of Parameter λi,i+1

Generally, λi,i+1 is taken as a predetermined value to

simplify the problem. It may be beneficial to estimate λi,i+1

for each factor node of fi,i+1 in Region 1 to improve decoding

performance. In our study, we utilize a similar method used for

σ2 estimation (see section II-A) to estimate λi,i+1 by sampling

Np particles λ1
i,i+1, · · · , λ

Np

i,i+1, for each factor node of fi,i+1

in Region 1. Here, we suppose that the change in λi,i+1 has the

same trend as the difference ∆σi,i+1 = |σ̄i − σ̄i+1| between

variable node of σi and σi+1, where σ̄i = 1
Np

∑Np

k=1 σk
i is

the mean of all the particles in variable node of σi. A larger

∆σi,i+1 means a greater probability of λk
i,i+1 to take a larger

value. Thus the weight of particles sampled for factor node of

fi,i+1 in Region 1 is defined as

ωi,i+1

(

λk
i,i+1

)

∝ e
−

(λk
i,i+1)2

(σ̄i−σ̄i+1)
2
. (5)

Then λi,i+1 = 1
Np

∑Np

k=1 λk
i,i+1 and σk

i can be estimated

alternately. To increase the stability, we perform one λi,i+1

estimation for every T number of iterations whereas σ2 esti-

mation is performed at each iteration as described in section

II-A.
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Fig. 2. Performance of BER versus SNR for Turbo decoder and LDPC
decoder using 1) the SNR determined by online estimation and 2) knowledge
of the true SNR, where the SNR for each case was constant within a codeword
block. The codeword block lengths of 10

3, 10
4, 10

5 were studied for LDPC
codes. The results of Turbo codes were from [4].

III. RESULTS

In this section, the decoding performances (in terms of bits

error rate (BER)) of standard BP and PF based BP decoders

for LDPC codes were presented in the presence of a SNR

mismatch. For the SNR mismatch, we considered two different

scenarios, constant SNR mismatch and time varying SNR

mismatch over an AWGN channel.

In our simulation, irregular LDPC codes with code rate of 1
3

and degree profile (λ⋆, ρ⋆) [19] were used, where the degree

profile (λ⋆, ρ⋆) was given by,

λ⋆ = 0.216724x1 + 0.164615x2 + 0.106047x5 + 0.0935029x6

+ 0.000689685x12 + 0.0153518x13 + 0.0272307x14

+ 0.00743584x15 + 0.0882668x16 + 0.0180324x32

+ 0.0942067x33 + 0.000367395x40 + 0.16753x99

and

ρ⋆ = 0.8x6 + 0.2x7.

Furthermore, for each variable node in Region 1, 16 parti-

cles were used. The initial value of λi,i+1 was equal to 0.01,

and then it was estimated online using the proposed algorithm,

where the parameter T was equal to 10. All the results were

obtained by averaging 10,000 different codewords and within

200 BP iterations.

In our experiments, first, we studied the decoding perfor-

mance of our proposed PF based BP decoder, where the SNR

was constant within each codeword block. In Fig. 2, the code-

word block lengths of 103, 104, 105 were studied for LDPC

codes, where the initial SNRs for BP and PF based BP de-

coders were the true SNR and −2 dB away from the true SNR,

respectively. For LDPC codes, simulation results of different

codeword block lengths showed no obvious degradation of

performance between the proposed PF based BP decoder and

the known SNR BP decoder. Also, the decoding performance

of Turbo codes using online estimation [4] was compared

with our proposed PF based BP decoder for LDPC codes.

Fig. 2 showed that both of the online estimator for Turbo

codes and the proposed PF based BP decoder for LDPC codes
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Fig. 3. Estimation of time-vary σ
2 using our proposed PF based BP decoder,

where a Chi-square distribution with σ
2

h
= 1.6 was used.

manage to avoid the decoding performance degradation caused

by SNR mismatch. Furthermore, the decoding performances

of both Turbo and LDPC codes improves as the codeword

block lengths are increased. When the codeword block length

was larger than 104, the performances of LDPC codes became

better than Turbo codes, which was also observed in [19].

Secondly, we studied the time varying SNR mismatch case.

We assumed that the noise variance σ2 satisfied a Chi-square

distribution with R = 2 degrees of freedom and variance σ2
h.

Additionally, we assumed that every 100 successive bits in

each codeword shared the same noise variance, which was

sampled from a given Chi-square distribution. Then different

Chi-square distributions could be obtained by varying σ2
h. In

Fig. 3, the solid line showed the sampled values of time

varying noise variances for a codeword block with length

104, where σ2
h was equal to 1.6. The dotted line showed the

estimation result using our proposed PF based BP decoder.

Furthermore, the initial value σ̂, used for estimation, was

always equal to the mean of sampled noise variances, which

was shown by a dash dotted line. An accurate estimation of

the noise variance σ2 was found in Fig. 3, although the initial

value used for estimation was far away from the true σ2.

Finally, we investigated the decoding performances of BP

decoder and PF based BP decoder with time varying SNR.

By changing σ2
h from 0.5 to 2.3, different noise variance

sequences with different mean values were sampled from

the corresponding Chi-square distribution. These mean values

were then used as initial values in our PF based BP decoder.

Fig. 4 showed that our proposed PF based BP decoder obtained

a much better performance than the known mean of time-

varying SNR BP decoder. The gap between BP with and

without the knowledge of true SNR was about 4 dB, however,

the gaps between a known true SNR BP decoder and a PF

based BP decoder were less than 0.5 dB and 0.1 dB at 10−4

and 10−5 BER levels, respectively. This result indicated that

knowing only the mean of the time-varying SNR was not

enough for a standard BP decoder to achieve its best decoding

performance, if the SNR in a channel varied in bit-level.

Moreover, in Fig. 4, BP with PF using MH showed a faster

convergence speed and obtained about 0.1 dB performance

gain compared with the normal PF based BP decoder.
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Fig. 4. Error probability for LDPC codes over a time-varying AWGN channel
with Chi-square distributed σ

2.

IV. CONCLUSION

This paper presents a BP algorithm associated with a PF

technique in factor graphs for LDPC decoding over a time-

varying AWGN channel. The method uses two different parti-

cle moving techniques, the Random Walk and the Metropolis-

Hastings algorithms. By incorporating the PF algorithm in

Region 1 of the proposed factor graph, the estimation of

channel SNR can be updated iteratively. Finally, a precise

channel SNR can be tracked when the algorithm converges.

Thus, our algorithm is not sensitive to the initial estimation of

the channel SNR, and it yields a better decoding performance

(in terms of lower BER) than the standard BP algorithm.

Furthermore, the MH algorithm used in PF showed a faster

speed of convergence than the RW algorithm.
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